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Perception as modeling 
the environment 

5

▪ How and why?  
▪ The evolutionary utility of vision 

toward survival and reproduction, 
in the environment. 

▪ The observer is constructing a 
model of what environment situation 
might have produced the observed 
pattern of sensory stimulation 

▪ Visual illusions: the model is 
sometimes inaccurate. 

▪ Ambiguous figures: the model is 
sometimes not unique. 
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Feedback 6

Felleman & Van Essen (1991)
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Feedback 7

▪ Inner loop 
▪ top-down processing without external 

feedback from the world. 
▪ e.g. IEF (iterative error feedback, 2016), 

Attention, Feedback Networks (2017), 
diffusion.  

▪ Outer loop 
▪ with external feedback from the world 
▪ e.g. RMA (2021), RNA (2023), Most 

vision-action loop (e.g. Mid-level 2019), 
“Test-Time Training” (2020) 

▪ (All of the above are test-time feedback)

Inner

Outer
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Outer loop 
Feedback

8

RMA: Rapid Motor Adaptation for Legged Robots, Kumar et al., RSS 2021



9

Vision In-the-loop

Control

Actions

Agent Sensory Observation

Perception Component

object classif.

2D segment.

occlusion edges

room layout

3D curvaturesurface normals

vanishing points

2.5D segment.

2D texture edges

reshading

Perception

Sensory Observation

Control

Actions

Control

Actions

Agent Sensory Observation

Perception Component

object classif.

2D segment.

occlusion edges

room layout

3D curvaturesurface normals

vanishing points

2.5D segment.

2D texture edges

reshading

3D curvature

room layout

2D segment.

occlusion edges

object classic.

surface normals

vanishing points

2.5D segment.

2D texture edges

reshading

Agent in the 
World



10

Linda Smith



RGB Frame StreamActive AgentLarge Real Space

Additional Modalities

Gibson Environment

1111



Local planning (“go to the target”) Stair climb

Sample perceptual agents  trained in Gibson (using Reinforcement Learning) 

1212



A. Zamir

Setup

• “Mid-Level Visual Representations Improve Generalization and Sample Complexity for Learning Visuomotor Policies”. Sax, Emi, Zamir, Guibas, Savarese, Malik. Arxiv 2018. CoRL 2019. 
• “Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation”. Chen, Sax, Pinto, Lewis, Armeni, Savarese, Zamir, Malik. CoRL 2020
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Tested hypothesis 1: Does mid-level vision accelerate learning? 
Tested hypothesis 2: Can mid-level features generalize better to unseen spaces?

13
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▪ (1) visual navigation 
▪ (2) rearrangement 
▪ (3) embodied vision-and-language

Common Tasks 
(2023)

15

Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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vision-and-language

22

Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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LLMs in robotics 
pipelines

24

RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control, Google, 2023.
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Robot Learning with Sensorimotor Pre-training, Radosavovic, Shi, Fu, Goldberg, Darrell, Malik. 2023 
Real-World Robot Learning with Masked Visual Pre-training, Radosavovic, Xiao, James, Abbeel, Malik, Darrell. CoRL 2022 
Masked Visual Pre-training for Motor Control, Xiao, Radosavovic, Darrell, Malik. ArXiv 2022 
MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022

Multi-modal learning → Motor Control
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RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control, 2023. 
PaLM-E: An Embodied Multimodal Language Model, 2023. 

Multi-modal learning → Motor Control
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Bower lab, Caltech. B Olshausen.
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The approach of David Marr
31

B. Olshausen
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B. Olshausen
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B. Olshausen
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B. Olshausen
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Anatomically tighter connection between 
vision & action

35

Guillery & Sherman, 2011
B. Olshausen
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Anatomically tighter connection between 
vision & action

36

Neil & Stryker, 2010 

▪ Activity in V1 notably increases during locomotion
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Sensorimotor 
Contingency

37

O’Regan & Noe (2001) 
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O’Regan & Noe (2001) 

(Cross) Calibration
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Erismann & Kohler 1931.  
 Stratton 1897. 

2:55 

https://www.youtube.com/watch?v=-kohUpQwZt8
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O’Regan & Noe (2001) 
B. Olshausen
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O’Regan & Noe (2001) 
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O’Regan & Noe (2001) 
B. Olshausen
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O’Regan & Noe (2001) 
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David Eagleman 
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David Ha 2022. Erismann & Kohler 1931. Stratton 1897. 
Paul Bach-y-rita (1934-2006) (the father of sensory substitution. 
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Behavior-based 
Robotics

46

▪ Intelligence Without Representation, Rodney Brooks, 1987.
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Allegory of the Cave, Plato
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LETTER Communicated by Anthony Bell

Is There Something Out There? Inferring Space from
Sensorimotor Dependencies

D. Philipona
david.philipona@polytechnique.org
Sony CSL, 75005 Paris, France

J.K. O’Regan
oregan@ext.jussieu.fr
Laboratoire de Psychologie Expérimentale, CNRS, Université René Descartes,
92774 Boulogne-Billancourt Cedex, France

J.-P. Nadal
Jean-Pierre.Nadal@lps.ens.fr
Laboratoire de Physique Statistique, Ecole Normale Supériure,
75231 Paris Cedex 05, France

This letter suggests that in biological organisms, the perceived structure
of reality, in particular the notions of body, environment, space, object,
and attribute, could be a consequence of an effort on the part of brains
to account for the dependency between their inputs and their outputs in
terms of a small number of parameters. To validate this idea, a procedure is
demonstrated whereby the brain of a (simulated) organism with arbitrary
input and output connectivity can deduce the dimensionality of the rigid
group of the space underlying its input-output relationship, that is, the
dimension of what the organism will call physical space.

1 Introduction

The brain sits inside the cranial cavity monitoring the neural signals that
come into it and go out of it. From this processing emerge the notions of
self, outside space, objects within that space, and object attributes like color,
luminosity, and temperature. Even simple organisms that have little or no
cognitive ability clearly possess these concepts at least implicitly, since they
show spatially adapted behavior like locomotion, navigation, grasping, and
discrimination of different objects.

How is this possible? What kind of algorithms must be at work inside
biological brains for these notions to be extracted from the neural activity
in a mass of unlabeled nerve fibers? Do brains have this capacity because
phylogeny has yielded a brain structure that is specially adapted to under-
standing the notion of space?

Neural Computation 15, 2029–2049 (2003) c© 2003 Massachusetts Institute of Technology

Inferring Space from Sensorimotor Dependencies 2031

brain

Figure 1: A simple organism consisting of an articulated arm with two “fingers”
and a composite “eye” mounted on each.

the same way to motor commands, while the other inputs show only partial,
unsystematic relations to motor commands. What is the natural conclusion
that the organism can deduce from this fact? It is the fact that its universe
can be separated into a part that the organism can completely control and a
part that the organism can only partially control.

We shall call the first part, over which it has complete control, the organ-
ism’s body and the second part the organism’s environment. We shall call the
first type of inputs proprioceptive and the others exteroceptive.1 We shall say
the body is stationary when proprioception is constant, and we shall say the
environment is stationary when exteroception is constant.2 Note that since
the organism is totally naive about its environment (and even about the fact
that there is such a thing at all as an environment), it has no choice but to
define these notions.

The brain can now attempt to understand its environment. Changes that
occur in exteroceptive sensors when the body is stationary can be taken to
derive from the environment. We shall assume that the brain attempts to
account for these changes, which are defined in the very high-dimensional
space of the number of exteroceptors, in terms of a much smaller number
of parameters. For example, in the case of the articulated arm, there may
be 40 photoreceptors, but their outputs are completely determined by a
much smaller number of parameters: the positions of the three lights in

1 We follow the terminology used in Kandel, Schwartz, and Jessell (2000) and stress
that exteroceptive sensors are sensitive not only to changes of the environment but to
motion of the body as well, while proprioceptive are sensitive to changes of the body only
(which is more restrictive that the usual use of this term). Also, it should be noted that this
distinction arises gradually: certain inputs that might at first seem completely determined
by motor commands will later turn out in fact only to be partially determined by them.

2 This definition is compatible with sensors sensitive to derivatives of position, since,
for example, if both velocity and position are constant, then velocity must be zero.

2034 D. Philipona, J. O’Regan, and J. Nadal

the changes that must have occurred in the environment. The similarity lies
in the very general idea of analyzing the sensorial consequences of a move-
ment of the body alone to understand the changes of the environment. This
is a classical idea today. But it usually relies on a kind of platonic a priori
about the existence of space and assumes that the role of the brain is to
map its sensory inputs to some kind of objective archetype of the world and
try to understand its sensations in relation to this abstract world. Here we
used terms such as “representations of the state of the exteroceptive body”
to describe what we (or the brain) conceive this world to be, without any
relationship with an a priori model.

3 Mathematical Sketch

In order to make the preceding discussion more precise and in order to
derive a simple, neuronally plausible algorithm, we present a sketch of a
mathematical formalization. We illustrate only the essential aspects of our
approach to show in a few steps how it is possible to deduce the dimen-
sion of the manifold of rigid transformations of outside “physical” space.
The appendix provides suggestions for a more realistic implementation,
and a second article will show, beyond the discovery of dimensions, how
the group structure of these rigid transformations can be accessed and
used.

We think that the problem we want to answer is precisely the problem
addressed in differential geometry. Indeed, a usual way of introducing the
aim of differential geometry is transparently summarized by saying that
“to consider S as a manifold means that one is interested in investigating
those properties of S that are invariant under coordinate transformations”
(Amari & Nagaoka, 1993). If we think of the sensorimotor system as a highly
redundant parameterization system to move in this manifold and make
observations on it, then the goals are strikingly identical. The structure of the
world consists in those properties that will be imposed on any sensorimotor
system; the rest is an artifact of the specificities of bodies. It is in this spirit
that we use the language of differential geometry, with the conviction it can
provide insights.

Consider an environment whose set of all states E is a manifold E of
dimension e. Suppose the set of all observed sensory inputs S is a mani-
fold S of dimension s, and the set of all possible outputs M is a manifold
M of dimension m. Finally, suppose the environment imposes a “smooth
enough” (meaning that we will consider the problem only in a region ex-
cluding the singularities ofψ) relation between sensory signals S and motor
commands M:

S = ψ(M, E). (3.1)

Note that with our definitions, we have S = ψ(M × E).

Sensorimotor 
Contingency

48

B. Olshausen
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Philipona et al. 2003 
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▪ The learned degrees of freedom

Sensorimotor 
Contingency

50

Inferring Space from Sensorimotor Dependencies 2039

Table 1: Summary of the Three Experiments.

Characteristics Organism 1 Organism 2 Organism 3

Dimensions of motor commands 40 100 100
Dimensions of exteroceptive inputs 40 80 80
Number of eyes 2 4 4
Diaphragms None Reflex Controlled
Number of lights 3 5 5
Light luminance Fixed Variable Variable

Dimensions found for body (p) 12 24 28
Dimensions found for environment (e) 9 20 20
Dimensions found for both (b) 15 38 41

Deduced dimension of rigid group (d) 6 6 7

Notes: Proprioception does not play a role in the calculation and so is not shown in the
table. The estimations given here are obtained from Figures 3c and 4. In Organism 3,
the group of compensated transformations is different from the orthogonal Euclidean
group because the organism has control over a nonspatial aspect of its body, namely the
diaphragm aperture.

of the results is presented in Table 1. It should be stressed that the same
kind of simulation could be done for any other arbitrary kind of device
with sensory inputs and motor outputs.

In the first experiment, the arm had four joints and two eyes, and the
environment consisted of three lights. Each eye consisted of a composite
“retina” with 20 omnidirectionally (i.e., not directional) sensitive photo sen-
sors mounted rigidly on a small, flat surface, attached to the end of a “finger,”
one for each eye.

Each joint had four proprioceptive sensors whose output depended on
the position of the joint, according to a fixed, randomly assigned law. The
orientation of the eyes provided no proprioception.

The motor command moving the device was a 40-dimensional vector,
which was converted by a fixed random function to the 12 values that de-
termined the 3D spatial coordinates of the surfaces holding the two eyes
and their orientations.

These particular choices were arbitrary: the purpose was merely to sim-
ulate a complicated sensorimotor relation that was unknown to the brain
and had the property that the number of dimensions of the motor com-
mands and of the sensory inputs should be high compared to the number
of degrees of freedom of the physical system.

In the second experiment, we considered a more complex device with
an arm having 10 joints, bearing 4 eyes. Each eye had a diaphragm or at-
tenuator with an automatic “pupil reflex” that reduced light input to it in
such a way that total illumination for the eye was constant. There were
five light sources in the environment, and we now allowed their inten-

Learned degrees of freedom

Philipona et al. 2003 
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▪ But: 
▪ Some things are easier 

(upside down goggles). 
Some things are harder 
(luminance reversal).

Sensorimotor 
Contingency
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▪ What is “correct”? 
▪ What appears to matter is the closed connection with downstream 

utility/actipn ⇒ things get (constantly) calibrated vs. being hard-wired 
to be the “correct” way 

▪ Engineering implication: close the connection with downstream 
utility of vision (and learning continually) vs. hard engineering a known 
configuration 
▪ (not the current “continual learning”) 
▪ Inductive biases still matter. 

Summary 52
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▪ (Again) vision should be viewed +action. 
▪ The architectural connection between vision and action may be denser 

than what we think.  
▪ Calibration, sensorimotor contingency, and representations  
▪ Some structure and selective relearning is still in play.

Summary 53
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Questions?

https://vilab.epfl.ch/  

54


